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A B S T R A C T   

Age-related macular degeneration (AMD) is one of the main causes of visual impairment in elderly people, with 
drusen and choroidal neovascularization (CNV) being two characterizing types of lesions. Based on optical 
coherence tomography (OCT), image classification can be used in AMD diagnosis, while image segmentation is 
necessary for quantitative assessment of the lesion area. In this paper, we propose a deep learning framework 
exploiting dual guidance between the two tasks. Firstly, a complementary mask guided convolutional neural 
network (CM-CNN) is proposed to perform classification of OCT B-scans with drusen or CNV from normal ones, 
where the guiding mask is generated by the auxiliary segmentation task. Secondly, a class activation map guided 
UNet (CAM-UNet) is proposed to achieve segmentation of drusen and CNV lesions, using CAM output from the 
CM-CNN. Tested on a subset of the public UCSD dataset, and compared with five classification networks, four 
segmentation networks, and three multi-task networks, the proposed dual guidance network has achieved higher 
accuracy both in classification and segmentation. The classification accuracy reaches 96.93% and the Dice co-
efficient for segmentation reaches 77.51%. Results on an extra dataset for detection of macular edema and 
segmentation of retinal fluids further show the generalizability of the proposed model.   

1. Introduction 

Age-related macular degeneration (AMD) is a degenerative disease of 
the retina, and a leading cause of vision loss worldwide [1]. According to 
the pathogenesis and clinical manifestations of the disease, AMD can be 
divided into dry or wet AMD. Drusen is a typical manifestation of dry 
AMD, which is formed by the accumulation of metabolites between 
Bruch’s membrane and the retinal pigment epithelium (RPE), causing 
focal elevations of the RPE [2]. Wet AMD, characterized by choroidal 
neovascularization (CNV), usually develops rapidly and causes more 
severe visual impairment than dry AMD [1]. CNV refers to the prolif-
erating blood vessels growing from the choroid, passing through Bruch’s 
membrane or even the RPE and resulting in subretinal or intraretinal 
fluid and hemorrhage [3]. In recent years, optical coherence tomogra-
phy (OCT) has been widely used in diagnosis and treatment of AMD. 
OCT has the advantages of high resolution and non-invasiveness, and it 
can give sectional view of the retina and the lesions, which is important 

for observing and tracking of AMD [4]. Fig. 1 shows some OCT images 
with drusen or CNV. As the neovascularization complex is often 
obscured by hemorrhage and fluid exudates, or even hidden in the 
choroid [4], the CNV lesion hereafter refers to the hyperreflective or 
partly hyperreflective lesions underneath the uplifted RPE. In this work, 
we establish an automatic framework for both classification of OCT 
images with drusen, CNV or normal retina, and segmentation of the 
lesions. The classification helps for rapid screening and diagnosis of 
AMD, while the segmentation allows quantitative analysis necessary for 
disease tracking and treatment planning. 

In recent years, automatic analysis of retinal pathologies from OCT 
images have attracted a lot of attention. Fig. 2 shows the number of 
papers year-wise from PubMed database [5] that reported works on 
classification or segmentation of retinal pathologies from OCT images, 
showing a general increasing trend, especially for deep learning based 
methods. Among these, various methods have been proposed for single 
tasks in AMD analysis. Regarding segmentation of drusen, Farsiu et al. 
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[6], Yi et al. [7] and Chen et al. [8] solved it combining thresholding and 
quadratic curve fitting methods. These traditional methods involved 
many preprocessing steps and their generalization performance was 
poor. More recently, machine learning, especially deep learning 
methods have been applied. Oliveira et al. [9] proposed to use random 
forest with texture features. Shekoufeh et al. [10] proposed to use UNet 
for layer segmentation, followed by shortest path searching and poly-
nomial fitting for drusen segmentation. Asgari et al. [11] used a multi- 
decoder network to achieve automatic segmentation of drusen. Wang 
et al. [12] proposed a novel multi-scale transformer global attention 
network combined with semi-supervised learning. With regard to seg-
mentation of CNV, Li et al. [13] utilized the three-dimensional direc-
tional gradient histogram feature to train random forests. Xi et al. [14] 
proposed a U-shaped network with attention enhancement block and 
informative loss to segment CNV. Zhang et al. [15] used a multi-scale 
parallel branch convolutional neural network. Meng et al. [16] pro-
posed a multi-scale information fusion network. Some other studies 
involved automatic classification of AMD. Wang et al. [17] made use of 
two identical feature extractors to extract features from fundus and OCT 
images, and fused them for classification of dry, wet AMD and normal 
eyes. Kermany et al. [18] used the InceptionV3 network pretrained on 
ImageNet to achieve classification of diabetic macular edema, drusen, 
CNV and normal OCT images. For the same task, Fang et al. [19] used a 
rough lesion segmentation map to guide the classification network, and 
Kamran et al. [20] proposed the Optic-Net which exploited improved 
residual learning element. More recently, Thomas et al. [21] and 
Sotoudeh-Paima et al. [22] proposed deep learning networks with 
multiscale structures for disease classification. Ma et al. [23] proposed a 
hybrid network utilizing both convolution and transformer structures. 

Despite of the respective efforts in pathology classification and seg-
mentation, in the clinic scenario, it is preferable and more efficient to 
perform both tasks in one unified framework. In recent years, multi-task 
learning algorithms have been developed to complete multiple closely- 
related but different tasks at the same time, which attempts to autono-
mously learn feature information that promotes one task from the other 
tasks. For example, in the Y-Net proposed by Mehta et al. [24], the 
classification and the segmentation tasks share the same encoder. Misra 
et al. [25] used the cross-stitch unit between two parallel networks to 
learn effective features in the other branch. Kawakami et al. [26] pro-
posed to connect single-task networks through convolutional layers to 
transfer useful information for the counterpart. For multi-task learning, 
further research is needed in the design of the network structure and the 
trade-off of the loss function for different tasks. 

In this work, we propose a new framework of dual guidance net-
works for the close-related tasks of AMD-associated OCT image classi-
fication and segmentation. Firstly, a complementary mask guided 
convolutional neural network (CM-CNN) is proposed to perform the 
classification of OCT images with drusen, CNV or normal retina. In CM- 
CNN, the auxiliary task of lesion segmentation is introduced. The 
resulting segmentation mask is used in a complementary form to guide 
the extraction of classification features, so as to improve the classifica-
tion performance. Secondly, a class activation map guided UNet (CAM- 
UNet) is proposed to achieve automatic segmentation of AMD lesions, 
where the CAM from classification is fused into the features at each layer 
to guide the segmentation task. 

2. Method 

2.1. Overview of the dual guidance networks 

In the proposed framework, two networks are trained sequentially 
for classification and segmentation, and the information in the other 
task is innovatively utilized to guide the learning of the current task. 
Specifically, dual guidance means introducing the segmentation mask to 
guide the classification network and then introducing the class activa-
tion map to guide the segmentation network. 

Fig. 1. OCT images with (a) CNV or (b) drusen. (Red rectangles indicate the 
lesions.). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 2. The number of papers from the PubMed database that reported works 
on (a) classification or (b) segmentation of retinal pathologies from 
OCT images. 
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The overall flowchart of the dual guidance networks is shown in 
Fig. 3. In the classification stage, the CM-CNN guided by complementary 
segmentation masks achieves automatic classification of the input 
image. Then, the Grad-CAM algorithm is used to obtain the class acti-
vation map of the input image in CM-CNN. In the segmentation stage, 
the original input image and the class activation map are simultaneously 
fed into the CAM-UNet to obtain the segmentation results of AMD 
lesions. 

2.2. Complementary mask-guided convolutional neural network 

The network structure of the proposed CM-CNN is shown in Fig. 4. It 
adopts ResNet18 [27] as the main feature extractor, as the residual 
blocks can effectively extract features and prevent the gradient vanish-
ing problem in the training process. The auxiliary task of segmentation 
mask is introduced at the bottom. Specifically, the input image is first 
passed through a convolutional layer with a kernel size of 7 × 7 to 
extract features with a large receptive field, and then the obtained fea-
tures are sequentially passed through four basic layers consisting of 

Fig. 3. The overall flowchart of dual guidance networks.  

Fig. 4. The network structure of CM-CNN.  

Fig. 5. An example of class activation map (a) raw image (b) class activation map overlaid on the raw image. Colors closer to red indicate higher importance in 
making the classification prediction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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residual blocks and downsampling operations. Each layer contains two 
residual blocks. Each residual block has two 3 × 3 convolution kernels, 
followed by Batch Normalization or Relu, as shown in Fig. 4. The output 
feature A passes through the 1 × 1 convolution and Sigmoid function to 
get the segmentation mask S, from which a segmentation loss is calcu-
lated. A is then multiplied by S and 1-S respectively to obtain the 
complementarily enhanced features. These two features are concate-
nated and then further processed by the convolution layer to obtain the 
complementary mask-guided feature F. Finally, F is sent to the fully 
connected layer to produce the predicted probability for each class, from 
which a classification loss is calculated. 

Note that, multiplying A with the coarse lesion mask S emphasizes 
the characteristics of the lesion area and intuitively helps classification. 
However, when there is mis-segmentation or when there is no lesion 
area in the normal image, some important information in the original 
features can be lost. Therefore, we design another branch where A×(1-S) 
is retained. This not only preserves the context information outside the 
mask, but also increases the nonlinearity of the network. Putting the 
complementary features into separate channels allow the network to 
deal with them differently. 

2.3. Class activation map of CM-CNN 

Grad-CAM [28] is an algorithm that offers visual explanations of the 
classification decisions made by CNN, and the generated CAM indicates 
the importance of different regions in the input image for classification 
prediction. Fig. 5 shows an example of the original input image and the 
CAM that predicts the input image as choroidal neovascularization. As 
can be seen, the CAM can roughly give the location of the lesion area in 
the OCT image, so it is adopted to guide the segmentation of the lesion 
area in the proposed framework. More examples of CAM can be found in 
Section 4. 

2.4. Class activation map-guided U-shaped segmentation network 

The network structure of CAM-UNet is shown in Fig. 6. It adopts a 
symmetrical U-shaped structure. The encoder uses ResNet18 [27] with 
five layers, which is the same feature extractor as in CM-CNN, described 
in Section 2.2. The residual blocks are again used to improve feature 

extraction and facilitate training. The decoder restores the output to the 
size of the input image. It has four layers. Each layer upsamples features 
through a 2 × 2 transposed convolution. The encoder and decoder are 
connected by skip connections to fuse spatial and semantic information, 
avoiding information loss caused by downsampling in the encoder [29]. 

As shown in Fig. 6, the CAM corresponding to the input image is 
fused with the encoded features at different resolutions by multiplica-
tion and addition, in order to enhance the features of the region of in-
terest while still keeping the original features. Since the size of the CAM 
obtained from CM-CNN is 16 × 16, different scales of upsampling are 
employed to match the size of the feature maps. By integrating the CAM 
into the skip connections at all levels, both the spatial information in the 
shallow layers and the semantic information in the deep layers can be 
guided by the CAM from the classification network. 

2.5. Loss functions 

The classification loss function is the cross entropy, expressed as. 

lossclass = −
∑N

c=1
yclog(pc) (1) 

where C indicates the category, yc represents the category label,pc is 
the predicted probability, and N represents the number of categories. 

The segmentation loss function is defined as the sum of binary cross 
entropy (BCE) and Dice loss. The Dice loss can make the network pay 
more attention to small objects. The loss functions are as follows: 

lossBCE = −
1
M

∑M

i=1
[tilnqi + (1 − ti)ln(1 − qi)] (2)  

lossDice = 1 −
1
M

∑M

i=1

2qiti

qi
2 + ti

2 (3)  

lossseg = lossBCE + lossDice (4) 

where ti denotes the value of the i-th pixel in the segmentation label 
map, qi represents the value of the i-th pixel in the prediction result, and 
M indicates the total number of pixels in the image. 

As shown in Fig. 3, As CM-CNN contains two sub-tasks of 

Fig. 6. The network structure of CAM-UNet.  
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classification and auxiliary segmentation, its overall loss function adopts 
the sum of classification loss and segmentation loss. For CAM-UNet only 
the segmentation loss function is used. 

3. Experiment settings 

3.1. Datasets 

Dataset I is a subset of the publicly available UCSD dataset [18]. All 
images were acquired by Heidelberg Spectralis OCT scanner (Heidelberg 
Engineering, Germany) from multiple centers. The original dataset 
included OCT B-scans of four categories, but in this study we only used 
images labeled as normal, drusen or CNV. The images in the original 
dataset only contained category labels, and the pixel-level ground truth 
of drusen and CNV lesions used in our study was labeled in-house under 
the guidance of an experienced clinician. As manual annotation was 
laborious, only a subset of the UCSD training set was labeled, which 
were divided into the training and validation set for our study. The 
entire UCSD testing set was labeled and used as our test set. The training 
set, validation set and test set were completely independent. 

To further show the generalizability of the proposed model, we built 
Dataset II from two public datasets. It included OCT scans with macular 
edema (caused by AMD or retinal vein occlusion), and from healthy 
subjects. The pathological OCT scans were from the RETOUCH dataset 
[30], including B-scans randomly chosen from 24 eyes. Pixel-level an-
notations were provided. OCT scans from normal eyes were from the 
Srinivasan2014 dataset [31], including B-scans randomly chosen from 
15 eyes. All OCT images were obtained from the same type of scanner 
(Heidelberg Spectralis), so that the classifiers wouldn’t be distracted by 
the difference in image qualities. For this dataset, the classification task 
was to label each B-scan as normal or pathological, and the segmenta-
tion task was to segment all fluid regions. The images were split into 
training, validation and testing sets on eye level. 

The detailed number of OCT images in the two datasets are shown in 
Table 1. All the OCT images used in this paper has undergone 

preprocessing steps before model training and testing, including filling 
the white edges of the image, image resizing to 512 × 512, and grey level 
normalization to [0,1]. 

3.2. Evaluation metrics 

The evaluation indicators for the classification of drusen, CNV and 
normal OCT images includes area under the ROC curve (AUC), single- 
class accuracy (sAcc), Sensitivity (Sen) and Specificity (Spe), calcu-
lated for each category, and the overall accuracy (Acc) and Kappa co-
efficient [32] for multi-class classification. The evaluation indicators for 
the classification of macular edema and normal OCT images includes 
AUC, Sen and Spe, and Kappa coefficient for two-class classification. 

The performance of the segmentation tasks is measured by five 
metrics [12,15]: Dice similarity coefficient (Dice), Intersection over 
Union (IoU), Sensitivity (Sen), Specificity (Spe), and pixel-wise accuracy 
(pAcc). 

3.3. Implementation details 

As shown in Fig. 3, for training of CM-CNN, the OCT image, the class 
label and the segmentation mask were needed. The sum of classification 
and segmentation losses were used to optimize the model. After the CM- 
CNN was trained, a CAM was calculated for each image. Then, for 
training of CAM-UNet, all pathological images with corresponding 
CAMs and masks were used. The segmentation loss was used to optimize 
the model. The testing followed similar procedures, except that no 
ground truth labels and masks were needed. 

The implementation of the proposed framework was based on the 
public platform PyTorch and on a NVIDIA GeForce RTX 2080Ti graphics 
card with 11 GB of video memory. In the training process, the Adam 
optimizer with a learning rate of 0.001 was used to optimize the pa-
rameters in the network. The batchsize was 8, and the training was 
performed for 50 epochs for both CM-CNN and CAM-UNet. Random 
horizontal flipping was used for data augmentation. The model pa-
rameters with the highest classification or segmentation performance on 
the validation set were saved for testing. All hyperparameter settings in 
the comparative experiments were kept the same. 

4. Experimental results 

4.1. Comparison with other classification networks on Dataset I 

We compare the performance of CM-CNN in the dual guidance 

Table 1 
The number of different types of OCT images in the datasets.   

Dataset I Dataset II 

CNV drusen normal macular edema normal 

Training set 1422 872 700 456 100 
Validation set 100 100 100 124 100 
Testing set 250 250 250 100 100  

Table 2 
Comparison with classification networks on Dataset I.   

Class AUC Sen Spe sAcc Acc Kappa #Param 
(M) 

Training 
time 
(h) 

Test 
time 
(ms) 

VGG16 
[33] 

CNV  0.9930 0.9960 0.9040  0.9347 0.9253 0.8880 14.93 0.78 18.40 
Drusen  0.9790 0.7800 1  0.9267 
Normal  0.9988 1 0.9840  0.9893 

MobileNet 
[34] 

CNV  0.9928 1 0.9340  0.9560 0.9373 0.9060 12.26 1.25 18.13 
Drusen  0.9835 0.8160 1  0.9387 
Normal  0.9979 0.9960 0.9720  0.9800 

SENet 
[35] 

CNV  0.9927 1 0.9500  0.9667 0.9467 0.9200 115.21 0.47 28.20 
Drusen  0.9865 0.8480 0.9960  0.9467 
Normal  0.9960 0.9930 0.9740  0.9800 

InceptionV3 
[18] 

CNV  0.9955 1 0.9540  0.9693 0.9520 0.9280 83.13 1.27 34.67 
Drusen  0.9854 0.8600 0.9980  0.9520 
Normal  0.9984 0.9960 0.9760  0.9827 

OpticNet 
[20] 

CNV  0.9951 0.9960 0.9420  0.9600 0.9400 0.9100 11.91 1.56 53.80 
Drusen  0.9812 0.8240 1  0.9413 
Normal  0.9995 1 0.9680  0.9787 

CM-CNN CNV  0.9988 0.9960 0.9680  0.9773   60.63 0.53 18.33 
Drusen  0.9874 0.9120 0.9980  0.9693 0.9693 0.9540 
Normal  0.9999 1 0.9880  0.9920    
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framework with some existing classification networks, including the 
traditional VGG16 [33], the lightweight MobileNet [34], the SENet [35] 
with the channel attention mechanism, the InceptionV3 used in the 
original paper of the UCSD dataset [18], and the OpticNet [20] with 
improved residual interpolation module, also proposed for OCT classi-
fication task. The experimental results are shown in Table 2. The overall 
classification accuracy reaches 96.93%, which is 1.73% higher than that 
of the second-ranked InceptionV3, and the Kappa value reaches 95.40%, 
which is 2.6% higher than that of InceptionV3. It also achieved the 
highest value in most of the single-class performance indicators. 

The model complexity, training and testing time are also listed in 
Table 2. The number of parameters of the proposed model is moderate 
comparing to other networks. The training time is short, only slightly 
longer than that of SENet. The testing time is short too, only slightly 
longer than that of MobileNet. 

4.2. Comparison with segmentation networks on Dataset I 

We also compare the performance of CAM-UNet with some existing 
segmentation networks, include PSPNet [36], Attention-UNet [37], 
UNet [29], and CENet [38]. The latter three were also proposed for 

medical image segmentation tasks. Table 3 gives the experimental re-
sults. For the four established models, results were obtained with only 
the OCT image as input, or with the OCT image concatenated with the 
corresponding upsampled CAM from CM-CNN as input, indicated by the 
cross or tick in the second column. Based on Dice as the main index, it 
can be seen that adding the CAM to the input can improve the seg-
mentation performance for all models. This proves that the CAM from 
the proposed CM-CNN indeed contains important information of path-
ological regions. Comparing the proposed CAM-UNet with all other 
models, it achieves the highest Dice coefficient of 77.51%. The IoU, Spe, 
and pAcc are also the highest among all networks compared. Though 
some models have high sensitivity, their lower specificity and IoU 
indicate over-segmentation with a lot of false positives. 

As also shown in Table 3, regarding model complexity and efficiency, 
the number of parameters of the proposed model is moderate comparing 
to other networks. The training time is the shortest, and the testing time 
is shorter than other models except UNet. 

Figs. 7 and 8 show the segmentation results of CNV and drusen lesion 
regions by different segmentation algorithms, respectively. From Fig. 7, 
it can be seen that the CNV region may have blurred boundaries or 
inhomogeneous intensity, and from Fig. 8, it can be seen that the drusen 

Table 3 
Comparison with segmentation networks on Dataset I.   

CAM Dice IoU Sen Spe pAcc #Param 
(M) 

Training 
time (h) 

Testing 
time (ms) 

PSPNet [36] × 0.6318  0.5128  0.6052  0.9957  0.9899 77.18 2.89 24.00 
√  0.7311  0.6032  0.7794  0.9932  0.9904 

Attention-UNet[37] × 0.7543  0.6447  0.7373  0.9962  0.9913 33.29 3.87 25.93 
√  0.7644  0.6423  0.7578  0.9961  0.9918 

UNet [29] × 0.7575  0.6439  0.7620  0.9953  0.9910 29.62 2.08 12.33 
√  0.7662  0.6382  0.8758  0.9928  0.9904 

CENet [38] × 0.7661  0.6541  0.7618  0.9961  0.9919 110.07 6.12 20.27 
√  0.7680  0.6421  0.8713  0.9928  0.9906 

CAM-UNet √  0.7751  0.6638  0.7610  0.9963  0.9923 60.79 1.37 14.60  

Fig. 7. Segmentation results of CNV using different algo-
rithms (a) original image (b) PSPNet (c) Attention-UNet 
(d) UNet (e) CENet (f) CAM-UNet. In the first column, 
the segmentation maps correspond to the red rectangle in 
the original image. Yellow: true positive, Red: false nega-
tive, Green: false positive. Comparative results were ob-
tained without CAM input to the networks. (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this 
article.)   
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regions are small, some separated and some adhered to each other. For 
both CNV and drusen, the proposed CAM-UNet can segment the lesion 
area more accurately than other methods. 

4.3. Comparison with multi-task networks on Dataset I 

We also compare our method with some existing multi-task deep 
learning networks including Y-Net[19], cross-stitch network [20] and 
cross-connected network [21] on both the classification and 

segmentation performance. As shown in Table 4, the proposed CM-CMM 
and CAM-UNet achieve the best classification and segmentation per-
formance compared with these multi-task networks. However, the total 
number of parameters are larger, and both training and testing time are 
longer. 

4.4. Ablation experiments on Dataset I 

In this subsection, to show the effectiveness of the proposed 

Fig. 8. Segmentation results of drusen using different algorithms (a) original image (b) PSPNet (c) Attention-UNet (d) UNet (e) CENet (f) CAM-UNet. The seg-
mentation maps correspond to the red rectangles in the original image. Yellow: true positive, Red: false negative, Green: false positive. Comparative results were 
obtained without CAM input to the networks. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 4 
Comparison with multi-task networks on Dataset I.   

Acc Kappa Dice IoU #Param 
(M) 

Trainingtime 
(h) 

Testtime 
(ms) 

Y-Net [24]  0.9213  0.8820  0.7362  0.6240  54.61  1.02  13.33 
Cross-stitch [25]  0.9467  0.9200  0.7540  0.6400  97.21  1.63  16.60 
Cross-connected [26]  0.9306  0.8960  0.7425  0.6349  103.40  1.72  15.33 
CM-CMM + CAM-UNet  0.9693  0.9540  0.7751  0.6638  121.42  1.90  38.86  

Table 5 
The ablation experiments of CM-CNN.   

Class AUC Sen Spe sAcc Acc Kappa 

ResNet18 CNV  0.9966 0.9920  0.9600  0.9770 0.9453 0.9180 
Drusen  0.9850 0.8520  0.9920  0.9453 
Normal  0.9980 0.9920  0.9660  0.9747 

ResNet18(mask) CNV  0.9989 0.9960  0.9740  0.9813 0.9560 0.9339 
Drusen  0.9851 0.8720  0.9980  0.9560 
Normal  0.9986 1  0.9620  0.9747 

CM-CNN CNV  0.9988 0.9960  0.9680  0.9773 0.9693 0.9540 
Drusen  0.9874 0.9120  0.9980  0.9693 
Normal  0.9999 1  0.9880  0.9920  
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components, we compare the proposed models with some of their 
variations. 

1) Ablation tests on the usage of segmentation masks for 
classification. 

Table 5 compares the classification performance of the baseline 
classification network ResNet18, the classification network where only 
the segmentation mask S is used, denoted as ResNet18 (mask), and CM- 
CNN using complementary masks S and 1-S. Based on overall Acc and 
Kappa values, adding single mask information as guidance can improve 
the classification performance, while using complementary mask in-
formation can make better use of the features extracted by the network, 
resulting in better classification performance. 

2) Ablation tests on usage of CAM for segmentation. 
First, the CAM obtained by different classification networks using the 

Grad-CAM algorithm are compared. As shown in Fig. 9, the attention 
areas of different networks are quite different. VGG16 and MobileNet 
have multiple convolution and pooling operations, and the attention of 
the classification network is relatively scattered. However, thanks to the 
residual structure in ResNet18, the gradient can be transmitted to the 
deeper part of the network, avoiding the annihilation of. 

effective features by multiple downsampling operations, and the 
resulting CAM has a larger highlighted area. In CM-CNN, with the 
guidance of proposed complementary segmentation masks, the CAM is 
more concentrated on the lesion area. From the comparison, it is clear 
that the CAMs obtained by VGG16 and MobileNet is not good to guide 
segmentation. While both the CAMs of ResNet18 and CM-CNN can cover 
the lesion area, CM-CNN locates the lesion area more accurately. 

On this basis, we compare the segmentation performance of the 
baseline segmentation network without CAM guidance, denoted as 
Res18-UNet, the segmentation network guided by the CAM of ResNet18, 
denoted as and CAM-UNet*, with the proposed CAM-UNet, guided by 
the CAM of CM-CNN. The performance indices are shown in Table 6. The 
experimental results show that both the CAMs of the original ResNet18 
and of the CM-CNN can effectively improve the segmentation perfor-
mance. The proposed CM-CNN not only achieves higher classification 
accuracy, but offers CAM that more effectively promotes the segmen-
tation network. 

Fig. 9. Class activation maps of different classification networks (a) Original Image (b) VGG16 (c) MobileNet (d) ResNet18 (e) CM-CNN (1st and 2nd row: CNV, 3rd 
and 4th row: drusen) Colors closer to red indicate higher importance in making the classification prediction. The proposed CM-CNN obtains CAM that conform better 
to the pathological regions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 6 
The ablation experiments of CAM-UNet.   

Dice IoU Sen Spe pAcc 

Res18-UNet  0.7498  0.6378  0.7292  0.9963  0.9917 
CAM-UNet*  0.7688  0.6557  0.7616  0.9959  0.9922 
CAM-UNet  0.7751  0.6638  0.7610  0.9963  0.9923  

Fig. 10. Segmentation of CAM-UNet and Res18-UNet. (a) original image (b) Res18-UNet (c) CAM-UNet (The segmentation maps of the second and third column 
correspond to the red rectangle in the original image. Yellow: true positive, Red: false negative, Green: false positive). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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Fig. 10 shows the segmentation results using Res18-UNet and CAM- 
UNet. After adding the guidance of the CAM, the network can segment 
the lesion areas more completely and accurately. 

4.5. Results on Dataset II 

The experimental results on Dataset II are shown in Table 7-9 and 
Fig. 11. Compared with the five classification models, four segmentation 

models and three multi-task models, the proposed method achieves the 
highest scores in most indices. It obtains a classification accuracy of 
97.00%, and a Dice score of 78.00% in segmentation. Table 8 also shows 
concatenating the CAM with the original OCT image as the input can 
improve the performance of other models. The qualitative results in 
Fig. 11 show that, in segmenting the fluid regions, the proposed method 
have less false negatives and false positives than other models. 

5. Discussion and conclusion 

AMD is a serious threat to the vision health of middle-aged and 
elderly people. Automatic detection and quantization of AMD-related 
pathologies help speed up the diagnosis and analysis of the disease. 
The dual guidance networks proposed in this paper exploit the strong 
correlation between the tasks of classification and segmentation tasks. 
Segmentation mask-guided CM-CNN and class activation map-guided 
CAM-UNet are designed to achieve classification of OCT B-scans into 
normal, drusen and CNV, and segmentation of drusen or CNV lesions in 
these images, respectively. CM-CNN adopts complementary masks to 
enhance the extracted features, allowing the network to pay more 
attention to the features of the lesion area while still keeping the in-
formation from the non-lesion area. Ablation tests show that the adop-
tion of segmentation guidance improved the classification accuracy. 
CAM-UNet fuses the CAM information obtained by CM-CNN to the U- 
shaped segmentation network, so that the network pays more attention 
to the regions considered important by the classification network. 
Ablation tests also prove the effectiveness of the guidance from classi-
fication. It is also shown that the proposed CM-CNN gives CAMs that 
better conform with the pathological regions and thus is more helpful for 
segmentation than other basic classification networks. The results of the 
proposed dual guidance networks are compared with those of some 
existing single-task or multi-task networks, and the proposed method 
achieves better performance. The classification accuracy reaches 
96.93% and the Dice coefficient for segmentation reaches 77.51%. Re-
sults on an extra dataset for detection of macular edema and segmen-
tation of retinal fluids further show the generalizability of the proposed 
model, with a classification accuracy of 97.00% and a Dice score of 
78.00%. The proposed models have moderate complexity compared to 
other single-task networks, and require short training and testing time. 
Although the proposed method is more complex and less efficient than 

Table 7 
Comparison with classification networks on Dataset II.   

AUC Sen Spe Acc Kappa 

VGG16[33]  0.9405  0.9600  0.7500  0.8550  0.7100 
MobileNet[34]  0.9503  0.9100  0.9000  0.9050  0.8100 
SENet[35]  0.9820  0.9100  0.9800  0.9450  0.8900 
InceptionV3[18]  0.9826  0.9800  0.8000  0.8900  0.7800 
OpticNet[20]  0.9565  0.9500  0.8300  0.8900  0.7800 
CM-CNN  0.9925  0.9800  0.9600  0.9700  0.9400  

Table 8 
Comparison with segmentation networks on Dataset II.   

CAM Dice IoU Sen Spe pAcc 

PSPNet [36] × 0.7025  0.5682  0.8134  0.9900  0.9879 
√  0.7039  0.5833  0.7624  0.9926  0.9891 

Attention-UNet 
[37] 

× 0.7626  0.6386  0.8366  0.9899  0.9880 
√  0.7655  0.6647  0.9063  0.9913  0.9908 

UNet [29] × 0.7665  0.6689  0.9096  0.9908  0.9903 
√  0.7685  0.6769  0.8379  0.9931  0.9919 

CENet [38] × 0.7428  0.6188  0.8755  0.9912  0.9902 
√  0.7561  0.6594  0.8415  0.9937  0.9923 

CAM-UNet √  0.7800  0.7085  0.8881  0.9953  0.9946  

Table 9 
Comparison with multi-task networks on Dataset II.   

Acc Kappa Dice IoU 

Y-Net [24]  0.8900  0.7800  0.7400  0.6178 
Cross-stitch [25]  0.9250  0.8500  0.7550  0.6347 
Cross-connected [26]  0.9050  0.8100  0.7413  0.6136 
CM-CMM + CAM-UNet  0.9700  0.9400  0.7800  0.7085  

Fig. 11. Segmentation results of retinal fluids using different algorithms (a) original image (b) PSPNet (c) Attention-UNet (d) UNet (e) CENet (f) CAM-UNet. Yellow: 
true positive, Red: false negative, Green: false positive. Comparative results were obtained without CAM input to the networks. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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the multi-task networks, its testing time can readily fulfill the require-
ment of clinical applications. 

Deep learning methods have been extensively applied to automatic 
OCT analysis, but most established methods are single-task ones aiming 
at classification [10–16] or segmentation [17–23]. As the two tasks are 
often both needed clinically, we design a unified framework that ach-
ieves both. Meanwhile, information from one task is used to guide the 
other, thus achieving improvement for both tasks. Compared to multi- 
task networks, in the proposed model, the information flow from one 
task to the other is explicitly defined and explainable. We believe this 
tailored guidance between tasks is more suitable for the specific tasks, 
making the proposed model achieve better performance than the gen-
eral multi-task models. The limitations of the proposed model lie in two 
aspects. First, compared to single-task models, the training of the pro-
posed networks requires both class and pixel-wise labels for each 
training image, which may be difficult to obtain. In the future, we’ll 
further exploit semi-supervised or weakly supervised models when some 
annotations are missing, so as to make use of more clinical data. Sec-
ondly, compared to multi-task models, the model requires sequential 
training and testing, so that the model complexity is higher and the ef-
ficiency is lower. Next, we will try to integrate the two networks into an 
end-to-end framework. 

Some other aspects for future improvement are as follows. First, the 
design of the dual guidance networks mainly focuses on effective utili-
zation of information from different tasks. Although it has outperformed 
some networks with more complex structures, such as PSPNet [36] with 
pyramid pooling module, CENet [38] with dense atrous convolution 
module and residual multi-kernel pooling module, more complex 
network structure and more advanced modules can be applied to further 
improve the performance. Secondly, the current classification are single- 
label ones, and the segmentation treats all lesions as one type. We will 
further extend the model for multi-label classification and multi-class 
segmentation. 
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